

1. The single-phase ac voltage controller of Fig. 5-1a has a 120-V rms 60-Hz source. The load resistance is 15Ω . Determine (a) the delay angle required to deliver 500 W to the load, (b) the rms source current, (c) the rms and average currents in the SCRs, (d) the power factor, and (e) the total harmonic distortion (THD) of the source current.

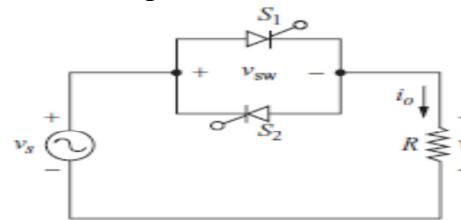


Fig. 5-1 (a)

2. Design a light-dimmer for a 120-V, 100-W incandescent light bulb. The source is 120 V rms, 60 Hz. Specify the delay angle α for the triac to produce an output power of (a) 75 W (b) 25 W. Assume that the bulb is a load of constant resistance.

3. A single-phase ac voltage controller is similar to Fig. 5-1a except that S2 is replaced with a diode. S1 operates at a delay angle α . Determine (a) an expression for rms load voltage as a function of α and V_m and (b) the range of rms voltage across a resistive load for this circuit.

4. The single-phase ac voltage controller of Fig. 5-1a is operated with unequal delays on the two SCRs ($\alpha_1 \neq \alpha_2$). Derive expressions for the rms load voltage and average load voltage in terms of V_m , α_1 , and α_2 .

5. For the single-phase voltage controller of Fig. 5-4a, the source is 120 V rms at 60 Hz, and the load is a series RL combination with $R = 20 \Omega$ and $L = 50 \text{ mH}$. The delay angle α is 90° . Determine (a) an expression for load current for the first half-period, (b) the rms load current, (c) the rms SCR current, (d) the average SCR current, (e) the power delivered to the load, and (f) the power factor.

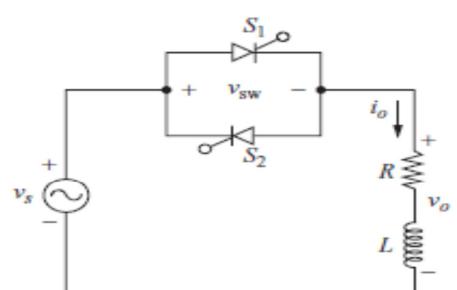
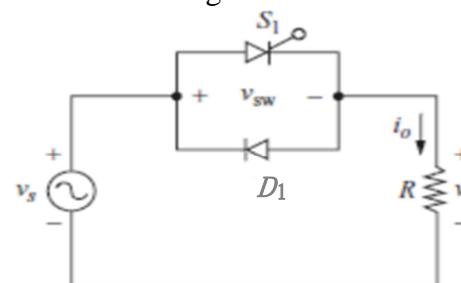



Fig. 5-4 (a)